
Efficient implementation ofEfficient implementation of
lattice lattice BoltzmannflowBoltzmannflow solverssolvers

Thomas Thomas ZeiserZeiser
ErlangenErlangen Regional Computing Center (RRZE)Regional Computing Center (RRZE)
University of University of ErlangenErlangen--Nuremberg, GermanyNuremberg, Germany

thomas.zeiser@rrze.unithomas.zeiser@rrze.uni--erlangen.deerlangen.de

with contributions of G. Hager, G. with contributions of G. Hager, G. WelleinWellein, and many others, and many others

Tutorial @ ICMMES 2009
Guangzhou, China
July 13, 2009

This work is financially supported by:
through grant SKALB
(01IH08003)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 2

Outline

Architectural developments
multi-core everywhere

Caches and memory hierarchies
cache and cache thrashing

Performance modeling
expected performance vs. sustained performance

Optimization
common sense optimizations, minimizing data access, effect of data layout

Parallelization
OpenMP, MPI, parallel scalability, domain decomposition

Tools
make, version control systems, MPI tracing

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 3

Preliminaries: what will / wont be covered here

best numerical
approach and algorithm

suitable
architecture

efficient
implementation

optimization
parallelization
sustainable development

It often pays out to
use a more “expensive”
approach (e.g. MRT vs.
BGK, better boundary
conditions, local grid
refinement, …) even if
they are computationally
less efficient and/or more
expensive!

engineering
problem to
be solved

There is no free
lunch.
Implementation of
efficient codes
requires under-
standing the
hardware.

See other lectures for details.
Here, we usually stick with
simple LB cases; but of course
many (but unfortunately not all)
optimization principles apply in
a similar way to more complex
scenarios, too.

1 2

3

Architectural developmentsArchitectural developments

Why we still have to worry about performance.Why we still have to worry about performance.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 5

Currently available compute platforms

45.7cm

38.6cm
CPUCPU

1985 1990 1995 2000

PE
R

FO
R

M
AN

C
E

PE
R

FO
R

M
AN

C
E

CMOSCMOS
AirAir--coolingcooling

ArchitectureArchitecture Multi nodesMulti nodes
(>10nodes)(>10nodes)

SX-4SX-4

TechnologyTechnology

2cm

2cm

11
440440

Super large clusterSuper large cluster
(>500 nodes)(>500 nodes)

2005

Single vector Single vector
processorprocessor

BipolarBipolar
Water CoolingWater Cooling

1 node1 node--
modulemodule

SX-5SX-5

SX-3SX-3

Large clusterLarge cluster
(>100 nodes)(>100 nodes)

SX-6/7SX-6/7

Earth Simulator

SX-1/2SX-1/2

2010

SX-8/8RSX-8/8RConsistent Innovation
Leading Edge Performance

Ve
ct

or
 c

om
pu

te
rs

GPUs and other
accelerators

C
om

m
od

ity
 c

lu
st

er

Vector computers are (unfortu-
nately) a dieing species; but
other architectures get more
and more vector-like feature.
GPUs and accelerators are not
yet mature enough for general
application (at least in my opinion).

focus on commodity CPUs

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 6

Ever growing processor speed & Moore´s Law

1965 G. Moore (co-founder of Intel) claimed
#transistors on processor chip doubles every 12-24 months

Intel Corp., 2008

Processor speed grew roughly at the same rate
My computer: 350 MHz (1998) – 3.000 MHz (2004)
Growth rate: 43% p.y. doubles every 24 months
Why worry about performance?

Attention:
Moore’s law is about
number of transistors
and not about speed
or performance, but …

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 7

Why worry about performance: memory gap

Memory (DRAM) Gap
Memory bandwidth grows
only at a speed of 7% a year.
Memory latency
remains constant / increases
in terms of processor speed.
Loading a single data item from
main memory can cost 100s of
cycles on a 3 GHz CPU.
On-chip memory controllers recently
gave boost (especially for multi-
socket nodes); but still, memory
bandwidth remains an issue.

Optimization of main memory access is mandatory
for most applications.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 8

Why worry about performance: multi-core

Multi-Core Processors – The game is over…
Problem: Moore’s law is still valid but increasing clock speed hits a
technical wall (power consumption / heat).

Solution: Reduce clock speed of processor but put 2 (or more)
processors (cores) on a single silicon die.

We will have to use many but less powerful processors in the future.

Parallelization is mandatory for most applications.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 9

Making use of all the transistors available

OverOver--clockedclocked
(+20%)(+20%)

1.00x1.00x

1.73x1.73x

1.13x1.13x

Max FrequencyMax Frequency

PowerPower

PerformancePerformance

DualDual--corecore
((--20%)20%)

1.02x1.02x

1.73x1.73x
DualDual--CoreCore

already
available

today

cores per die

re
du

ct
io

n
of

 c
lo

ck
sp

ee
d

8 cores running at half
speed of a single core
CPU consume the same
energy

Relative frequency reduction vs. core count
(fixed power dissipation & fixed process technology)

by
 c

ou
rte

sy
 o

f I
nt

el
, 2

00
6

http://chip-architect.com/news/Shanghai_Nehalem.jpg

more cores
more/larger caches

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 10

Top500 trends and cores on the desktop
Number of processors is
rapidly “exploding”
due to more nodes but also
due to multi-core chips
more and more systems
become “hybrid”

62 976Sun Ranger (Opteron)TAC8

1 280Earth Simulator 2,
NEC SX-9/E

JP22

30 720QC AMD Opteron,
Windows HPC

SSC,
CN

15

51 200SGI Altix ICE
(Intel Harpertown)

NASA4

294 912IBM BlueGene/PFZJ, DE3

150 152Cray XT5Oak
Ridge

2

129 600IBM Roadrunner
Opteron+Cell

LANL1

CoresSystemSiteRank

And on the desktop?
single/dual/quad/… core CPUs
or 960 cores with 4 GPUs

Caches and memory hierarchies of Caches and memory hierarchies of
modern processorsmodern processors

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 12

Programming basics

Be aware of different memory mapping for FORTRAN & C:

Different ordering of nested loops required for
“stride 1 access” (i.e. consecutive memory access)!

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3

0,0 1,0 2,0 3,0 0,1 1,1 2,1 3,1 0,2 1,2 2,2 3,2 0,3 1,3 2,3 3,3

real*8 a(0:3,0:3) ! FORTRAN: column-major

double a(4,4) // C/C++: row-major
0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3

do j=0,3
do i=0,3

a(i,j)= …
enddo

enddo

for (i=0; i<4; i++) {
for (j=0; j<4;j++) {

a(i,j)= …;
}

}

0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3

column jrow i

!

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 13

Cache based
Micro-Processor

Cache based
Micro-Processor

Memory hierarchies

Vector ProcessorVector Processor

Main
Memory

arithmetic
units

arithmetic
units

vector register
L1 cache

L2 cache

L3 cache

ApplicationApplication

Data

manipulation/
computation

arithmetic
unit

arithmetic
unit

Main
Memory

floating point
register

„DRAM Gap“

Processor chip

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 14

Memory hierarchies of recent (dual-core) CPUs

~200 ns
8.5 GB/s

12-13 cycles
51.2 GB/s
6 / 12 MB
5-6 cycles
51.2 GB/s

256 KB
1 cycle

51.2 GB/s
16 KB
128

6.4 GFlop/s
1.6 GHz

DC Intel
Itanium2

< 100 ns
6.4 GB/s

~13 cycles
41.6 GB/s

1 MB
3 cycles

41.6 GB/s
64 kB

16 / 32*

5.2 GFlop/s
2.6 GHz

DC AMD
Opteron2362

~200 ns
10.6 GB/s

7 cycles
96 GB/s

4 MB (for 2 cores)

2 cycles
96 GB/s
32 kB

16 / 32*

12.0 GFlop/s
3.0 GHz

DC Intel
Xeon5160

10.64 GFlop/s
2.66 GHz

Peak Performance
Core frequency

~75 nsLatency
32 GB/sRaw BW

Memory

40-50 cyclesLatency
?Raw BW

8 MB (for 4 cores)Size
L3

~10 cyclesLatency
?Raw BW

256 kBSize
L2

4 cyclesLatency
?Raw BW

32 kBSize
L1(D)

16 / 32*#Registers

QC Intel
Nehalem *SSE2

~600
cycles

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 15

Vector TRIAD test: sustained memory bandwidth
double precision :: a(maxLen), b(maxLen), c(maxLen), d(maxLen)
do j=1, repeatCount

!DEC$ VECTOR NONTEMPORAL
do i=1, N

a(i) = b(i) + c(i) * d(i)
end do
! obscure statement to prevent loop optimization

end do

P
C
C

P
C
C

P
C
C

MI

Memory

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

Memory

P
C
C

C

Nehalem
„Core i7“

32 kB 256 kB

8 MB
for 4
cores;

2 MB
effective

L1
L2
L3

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 16

Memory hierarchies: cache structure

caches are organized in cache lines that are fetched/stored as a
whole (e.g. 64 bytes = 8 double words)

if one item is needed, the cache line it belongs to is fetched (miss)
cache line fetch/load has large latency penalty
“neighboring“ items can then be used from cache

Iteration

Cache miss : LatencyLD Use data1
2
3
4

t

5
6
7
8

do i=1,n
s = s + a(i)*a(i)

enddo

hypothetic
cache line size:
4 words

LD Use data

LD Use data

LD Use …

Cache miss : LatencyLD Use data

LD Use data

LD …

LD Use data

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 17

Memory hierarchies: cache structure (cont.)

Cache line data is always consecutive
cache use is optimal for contiguous access (stride 1)
non-consecutive access reduces performance
(worst case: ≥ cache line size)
ensure spatial locality by blocking or optimizing data layout

see lattice Boltzmann part later on

Modifying/writing data (usually) requires loading the data first
“read for ownership” (RFO)
unless “non temporal stores” can be used (requires e.g. vectorizable code and proper alignment)

Caches (~MB) must be mapped to memory locations (~GB)

Memory
(109 Byte)

Cache
(106 Byte)

Cache line x

Cache line y

!

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 18

Memory hierarchies: cache mapping

“Cache mapping”:
pairing of memory locations with cache line
e.g. mapping 1 GB of main memory to 512 KB of cache

Directly mapped cache:
every memory location can be mapped to exactly one cache location
if cache size=n, i-th memory location is mapped to cache location mod(i,n)
memory access with stride=cache size will not allow caching of more than
one line of data, i.e. effective cache size is one line!
no penalty for stride-one access

Set-associative cache:
m-way associative cache of size m x n: each memory location i can be
mapped to the m cache locations j*n+mod(i,n), j=0..m-1
if all m locations are taken, one has to be overwritten on next cache load;
different strategies (least recently used (LRU), random, not recently used (NRU)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 19

Memory hierarchies: associative caches

...

...

N+1

1

2N-1N+2N

N-120

...

Example: 2-way associative cache. Each memory location can be
mapped to two cache locations.

e.g. size of main memory= 1 GByte; Cache Size= 256 KB
8192 memory locations are mapped to two cache locations

Memory

Cache

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 20

Memory hierarchies: cache thrashing

If many memory locations are used that are mapped to the same m
cache slots, cache reuse can be very limited even with m-way
associative caches.

Effective cache size is usually less than m x n for real-world
applications.

Warning: Using powers of 2 in the leading array dimensions of
multi-dimensional arrays should be avoided!
“Padding” may help.
See example on the following slides.

!

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 21

N=16
real*8 vel(1:N , 1:N, 4)
……
s=0.d0
do j=1,N

do i=1,N
s=s+vel(i,j,1)-vel(i,j,2)+vel(i,j,3)-vel(i,j,4)

enddo
enddo

Example: 2D – square lattice
At each lattice point the 4 velocities for each of
the 4 directions are stored.

Memory hierarchies: cache thrashing example

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 22

….

….

….

….

1,1,1 2,1,1 3,1,1 4,1,1

memory-to-cache mapping for vel(1:16, 1:16, 4)
Hypothetic cache: 256 byte (=32 doubles) / 2-way associative / Cache line size=32 byte

1,1,1 2,1,1 3,1,1 4,1,1

1,1,2 2,1,2 3,1,2 4,1,2 …. 1,1,3 2,1,3 3,1,3 4,1,3 …. 1,1,4 2,1,4 3,1,4 4,1,4

Hypothetic cache:

2 rows with 16
double each

Vel(1:16,1:16,1)

1,1,1 2,1,1 3,1,1 4,1,1 ….

1,1,2 2,1,2 3,1,2 4,1,2

1,1,3 2,1,3 3,1,3 4,1,3

1,1,4 2,1,4 3,1,4 4,1,4

Vel(1:16,1:16,2)
Vel(1:16,1:16,3)
Vel(1:16,1:16,4)

i=1, j=1

Each cache line must be loaded 4 times from main memory to cache!

1,1,3 2,1,3 3,1,3 4,1,31,1,1 2,1,1 3,1,1 4,1,1

1,1,2 2,1,2 3,1,2 4,1,21,1,4 2,1,4 3,1,4 4,1,41,1,2 2,1,2 3,1,2 4,1,21,1,4 2,1,4 3,1,4 4,1,4

1,1,3 2,1,3 3,1,3 4,1,3

Memory hierarchies: Cache thrashing example

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 23

….

….

Memory-to-cache mapping for vel(1:18, 1:18, 4)
Hypothetic cache: 256 byte (=32 doubles) / 2-way associative / Cache line size=32 byte

1,1,2 2,1,2 3,1,2 4,1,2 …. 1,1,3 2,1,3 3,1,3 4,1,3 …. 1,1,4 2,1,4 3,1,4 4,1,4

Hypothetic cache:

2 rows with 16
doubles each

1,1,1 2,1,1 3,1,1 4,1,1 ….

….1,1,4 2,1,4 3,1,4 4,1,4

i=1, j=1

1,1,3 2,1,3 3,1,3 4,1,3

17,1,2 18,1,2 1,1,4 2,1,4

(most) cache lines need only be loaded once from memory to cache!
“padding” of the array solved the cache thrashing issue

17,1,1

…

….

….1,1,1 2,1,1 3,1,1 4,1,1

1,1,2 2,1,2 3,1,2 4,1,2

1,1,3 2,1,3 3,1,3 4,1,3

1,1,1 2,1,1 3,1,1 4,1,1

18,1,1

3,1,4 4,1,4 ….1,1,2 2,1,217,1,1 18,1,1 3,1,2 4,1,2 5,1,2 6,1,2

Memory hierarchies: cache thrashing solved

Performance modelingPerformance modeling

expected performance vs. sustained performanceexpected performance vs. sustained performance

How close to the “optimum” am I ?How close to the “optimum” am I ?

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 25

Lattice Boltzmann method: basic algorithm
The evolution of the particle distribution
functions fi at each lattice node is
calculated in discrete time steps.

Calculation of macroscopic flow quantities
and the equilibrium distribution

„Collision“: relaxation (redistribution) of the
particle distributions towards equilibrium

„Propagation“ of the distribution functions
according to their direction to the next nodes

„Bounce back“ at solid walls

co
m

pu
ta

tio
na

lly
 in

te
ns

iv
e,

ho
w

ev
er

 p
ur

el
y

lo
ca

l

m
em

or
y

op
er

at
io

ns
 o

nl
y

–
ho

w
ev

er
, i

nv
ol

ve
s

on
ly

ne

xt
-n

ei
gh

bo
r c

om
m

un
ic

at
io

n
Computationally: (D3Q19)

explicit Jacobi-like iteration
scheme
19 double precision floating point
values stored per node
19-point stencil; data exchange
with nearest neighbors
~ 200 Flops per node update
(for BGK or TRT collision model)

algorithmic balance:
456 bytes / 200 flops = 2.3 B/flop

system balance of a 2-socket
Nehalem node (2.66 GHz, no SMT):
32 GB/s sustained stream bandwidth /
85.12 GFlop/s = 0.37 B/flop

we will usually be memory bound

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 26

Estimation of performance: in-cache case

our performance metric for lattice Boltzmann codes:
million (fluid) lattice node updates per second – MLUP/s

performance estimation
general assumptions

D3Q19 lattice
200 floating point operations per fluid node update (reasonable for BGK/TRT)

Case 1: data transfer is infinite fast (all data fits into cache):
max. MLUP/s = PeakPerformance / (200 Flop/node update)
single 2.66 GHz Intel Core i7 core = 10,640 MFLOP/s max. 53 MLUP/s
in reality even simple kernels do not achieve peak performance
and transfer speed is finite even for caches
thus, this upper limit is more hypothetical than real
in-cache performance depends on many small details and can vary e.g.
significantly from compiler release to compiler release

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 27

Estimation of performance: memory-bound case
Crossover between cache and memory bound computations

Complete domain no longer fits into outermost cache (N=Nx=Ny=Nz)
2 *19 * N^3 * 8 Byte ~ L2/L3 cache size

1 MB cache: N ~ 14-15; 4 MB cache: N ~ 23-24

Cache 2: data must always be transferred from/to main memory
assumption: full use of each cache line loaded
data to be transferred for a single fluid node update: (including RFA)
(2+1) * 19 * 8 Byte 456 Bytes/(node update)
max. number of lattice site updates per second MLUPs:
MaxMLUPs = MemoryBandwidth / (456 Bytes/node update)
(effective) MemoryBandwidth = 3-12 GByte/s MaxMLUPs ~ 6-26 MLUPs

Verification of efficiency of data access using hardware perf counter
number of cache misses is a bad performance metric (at least on Intel Xeon
systems due to hardware prefetcher, etc.)
more reliable: memory bus (FSB) utilization and number of buss accesses
minimum number of bus accesses: N^3 * timesteps * 456 / 64 size of a

cache line

Implementation and optimizationImplementation and optimization
of a 3of a 3--D lattice Boltzmann kernelD lattice Boltzmann kernel

common sense optimizationscommon sense optimizations
minimizing data accessminimizing data access
effect of data layouteffect of data layout

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 29

Basic optimizations: preliminaries (general)

General guidelines – some common sense optimizations

1. do less work
eliminate common sub-expressions
avoid branches; move if tests outside of inner loops

2. avoid expensive operations
a division is much more expensive than a multiplication
does the compiler realize that x**2.0 is just x*x
trigonometric expressions, etc.
“strength reduction”; tabulating values; …

3. shrink working set
use appropriate data types (e.g. float vs. double)
only calculate / store what is really required

4. use appropriate compilers and compiler flags
optimization; inlining; …
tell the compiler if data references disjoint locations (i.e. no aliasing)

G. Hager and G. Wellein:
Part 1: Architectures and
Performance Characteristics
of Modern High Performance
Computers.
Part 2: Optimization
Techniques for Modern High
Performance Computers.
In Fehske et al., Lecture Notes
Phys. 739, pp 681-730 and pp.
731-767 (2008), ISBN: 978-3-
540-74685-0. (Springer, Berlin)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 30

Basic optimizations: preliminaries (LBM specific)
1. analyze relaxation step (I)

many operations can be eliminated (common sub-expressions, zero-
velocity components, etc.) — do not rely on compiler!
of floating point operations depends on compiler & optimization level

even worse: (C++) function calls which are not inlined; e.g. getF(…)
2. analyze relaxation step (II)

compare usq=ux**2.0+uy**2.0+uz**2.0 usq=ux*ux+uy*uy+uz*uz
3. combine collide & stream step in a single loop to minimize data

transfer! Otherwise data may have to be transferred twice.

4. e.g. for Intel compiler: -O3 –xSSE4.2 –fno-alias
(–fno-alias of course only if no pointer aliasing is used)

! Calculate ux velocity component
ux=0.d0
do i=0,18

ux=ux+ex(i)*f(i,x,y,z,t)
enddo
! worst case: loop, 38 LD; 19 MultAdd

ux=f(E ,x,y,z,t)+f(NE,x,y,z,t)+
f(SE,x,y,z,t)+f(TE,x,y,z,t)+
f(BE,x,y,z,t)-f(W ,x,y,z,t)-
f(NW,x,y,z,t)-f(SW,x,y,z,t)-
f(TW,x,y,z,t)-f(BW,x,y,z,t)

! 10 LD; 9 Add

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 31

Basic optimizations: initial implementation

Starting point: straight forward
“full matrix” approach with
toggle index and
marker-and-cell flag field

separate storage for even/odd
time steps (“source/destination”)
to avoid data dependencies
discrete velocity as additional
array index
ghost layer (to avoid special
algorithm at domain boundaries)

5-D array f(Q, x,y,z, t)
In the following, it is assumed
that by increasing the first
index by one, you go to the
physically next location in
memory (FORTRAN, column-major).

real*8 f(0:18,0:Nx+1,0:Ny+1,0:Nz+1,0:1)
do z=1,Nz; do y=1,Ny; do x=1,Nx
if(fluidcell(x,y,z)) then
LOAD f(0,x,y,z,t)
LOAD f(1,x,y,z,t)
…
LOAD f(18,x,y,z,t)
Relaxation (complex computations)
SAVE f(0,x ,y ,z ,t+1)
SAVE f(1,x+1,y ,z ,t+1)
SAVE f(2,x ,y+1,z ,t+1)
SAVE f(3,x-1,y+1,z ,t+1)
…
SAVE f(18,x ,y-1,z-1,t+1)

endif
enddo; enddo; enddo

#load operations: 19*Nx*Ny*Nz + 19*Nx*Ny*Nz
#store operations: 19*Nx*Ny*Nz

If cache line of store operation is not
in cache it must be loaded first (RFO) !

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 32

Performance characteristics of initial code

Intel Xeon 3.4 GHz (1 MB L2; 5.3 GByte/s) max. 5-6 MLUP/s

data set fits into cache

performance breakdowns?

f(Q, x,y,z, t)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 33

Explanation of the performance breakdowns
A single node is updated by
18 write accesses from
3 successive z-planes.

total amount of data for
3 successive z-planes:
Memz ~ 3 * 2 * 19 *8 *
(Nx+2)*(Ny+2) Bytes

cache lines must be
reloaded if
Memz ~ L2/L3 cache

1 MB cache Nx=Ny ~ 33

next breakdown if only
3 y-lines fit into cache

D
ra

w
in

g
by

 c
ou

rte
sy

 o
f S

. D
on

at
h,

 L
SS

/R
R

ZE

all data fits to cache

always from
main memory

3 z-planes
fit to cache 3 y-lanes

fit to cache

Intel Xeon 3.4 GHz (1 MB L2)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 34

Optimization of data access: spatial blocking

Increase spatial locality by spatial blocking

real(8) f(0:18,0:Nx+1,…,0:1)
do zz=1,Nz,blcksize
do yy=1,Ny,blcksize
do xx=1,Nx,blcksize
do z=zz,min(Nz,zz+blcksize-1)
do y=yy,min(Ny,yy+blcksize-1)
do x=xx,min(Nx,xx+blcksize-1)

if(fluidcell(x,y,z)) then
…………
endif

enddo
enddo
enddo
enddo

enddo
enddo

Correct choice of blcksize?

• 2*19*blcksize3 Byte < L2/L3
→ blcksize ~8-10

• 2*19*3*bcksize2 Byte < L2/L3
→ blcksize ~25-30

Sc
he

m
at

ic
 a

ni
m

at
io

n
by

 c
ou

rte
sy

 o
f S

. D
on

at
h,

 L
SS

/R
R

ZE

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 35

Performance characteristics with 3-D blocking

Unblocked:
first performance drop at Nx=xMax~35

Intel Xeon 3.4 GHz (1 MB L2; 5.3 GByte/s) max. 5-6 MLUP/s

With spatial blocking:
performance remains
almost constant
blcksize=8

f(Q, x,y,z, t)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 36

Optimization of data access: data layout

Starting point: straight forward “full matrix” approach
with toggle index and marker-and-cell flag field

separate storage for even/odd time steps (“source/destination”)
to avoid data dependencies
discrete velocity as additional array index
ghost layer (to avoid special algorithm at domain boundaries)

5-D array: F(0:18, 0:xMax+1, 0:yMax+1, 0:zMax+1, 0:1)

By increasing the first index by one, you go to the physically next
location in memory (FORTRAN, column-major).

In principle, any permutation of these indices can be used…
…but which is the most efficient?

F(Q, x,y,z, t) „collision optimized“ („array of structures”)

F(x,y,z, Q, t) „propagation optimized“ („structure of arrays”)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 37

real*8 f(0:18,0:Nx+1,0:Ny+1,0:Nz+1,0:1) f(0:Nx+1,0:Ny+1,0:Nz+1,0:18,0:1)
do z=1,Nz; do y=1,Ny; do x=1,Nx do z=1,Nz; do y=1,Ny; do x=1,Nx
if(fluidcell(x,y,z)) then if(fluidcell(x,y,z)) then
LOAD f(0,x,y,z,t) LOAD f(x,y,z, 0,t)
LOAD f(1,x,y,z,t) LOAD f(x,y,z, 1,t)
… …
LOAD f(18,x,y,z,t) LOAD f(x,y,z,18,t)
Relaxation (complex computations) Relaxation (computations)
SAVE f(0,x ,y ,z ,t+1) SAVE f(x ,y ,z , 0,t+1)
SAVE f(1,x+1,y ,z ,t+1) SAVE f(x+1,y+1,z , 1,t+1)
SAVE f(2,x ,y+1,z ,t+1) SAVE f(x ,y+1,z , 2,t+1)
SAVE f(3,x-1,y+1,z ,t+1) SAVE f(x-1,y+1,z , 3,t+1)
… …
SAVE f(18,x ,y-1,z-1,t+1) SAVE f(x ,y-1,z-1,18,t+1)

endif endif
enddo; enddo; enddo enddo; enddo; enddo

Effect of different data layouts

„collision“

„propa-
gation“

Data layout has a significant effect on cache based systems:
structure-of-arrays layout has high spatial data locality built-in
if 38 cache lines stay in the cache! (38 * 128 Byte ~ 5 kByte << L2/L3 caches)
but watch possibility of cache thrashing for structure-of-arrays layout

structure-of-arraysarray-of-structures

loop blocking
mandatory !?

stride-1
memory
access

19 different
cache lines;
but re-usable

large
distances

in memory;
cache lines

rarely
reusable

19
cache
lines;
but

all are
reusable

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 38

Performance characteristics of 2nd data layout

f(Q,x,y,z,t)
array-of-structures
with/without
spatial blocking

f(x,y,z,Q,t)
structure-of-arrays;
without any blocking

all data in
L2 cache

MaxMLUPs

3 lines in
L2 cache

3 plans in
L2 cache

correct choice of data layout
improves performance by 2x-3x
without the need for blocking

Intel Xeon 3.4 GHz (1 MB L2; 5.3 GByte/s) max. 5-6 MLUP/s

f(Q, x,y,z, t)
f(x,y,z, Q, t)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 39

Optimization of data access: cache thrashing

Generally avoid powers of 2 in the leading dimension
of (multidimensional) arrays.

use “array padding” if necessary

In case of the
structure-of-arrays
data layout:

Use
F(0:128,0:128,…)

instead of
F(0:127,0:127,…)

The array-of-structures
data layout generally
does not suffer from
cache thrashing as the
leading dimension is 19.

f(Q, x,y,z, t)
f(x,y,z, Q, t)

!

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 40

Optimized data movement: splitting innermost loop
! temporary arrays to hold pre-calculated values
real(8) :: ux(Nx), uy(Nx), uz(Nx), dens(Nx)
do z=1,Nz; do y=1,Ny

do x=1,N
dens(x) = sum(f(x,y,z,:,t))
ux(x) = f(x,y,z,NE,t) + f(x,y,z,SE,t) + …
uy(x) = … ; uz(x) = …

end do
! update (relax and advect) first fraction of directions
do x=1,Nx

feq_com=…; t2x2=…; fac2=…; ! calc common coefficients
ui= ux(x)+uy(x); …sym = omega_h(f(x,y,z,NE,t)+f(x,y,z,SW,t)- fac2*ui*ui-t2x2*feq_com)asy = asyo_h*(f(x,y,z,NE,t)-f(x,y,z,SW,t)-3.d0*t2x2*ui)
f(x+1,y+1,z,NE,t1) = f(x,y,z,NE,t) - sym – asyf(x-1,y-1,z,SW,t1) = f(x,y,z,SW,t) - sym + asy…

end do
! update (relax and advect) 2nd/3rd fraction of directions
do x=1,Nx; similar calculations; end do

end do; end do

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 41

Performance characteristics with loop splitting

Woodcrest:
Intel Xeon 5150
2.67 GHz
4 MB L2 (2 cores)

FSB1333
(10.6 GB/s)

Opteron:
AMD Opteron 270
2.0 GHz
1 MB L2 (per core)

6.4 GB/s

Itanium2:
Intel Itanium2/Madison9M
1.6 GHz / 6 MB L3 / 8.5 GB/s

f(x,y,z,Q,t)
f(x,y,z,Q,t)

f(x,y,z,Q,t)
f(x,y,z,Q,t)
f(x,y,z,Q,t)
f(x,y,z,Q,t)

most significant performance gain
on Intel Xeon (Woodcrest) system

2x !

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 42

Reducing the memory footprint
Compressed grids

T. Pohl, M. Kowarschik, J. Wilke, K.
Igelberger, U. Rüde: Optimization and
profiling of the cache performance of
parallel lattice Boltzmann codes.
Par. Proc. Lett., 13:4 (2003) 549-560.

Intelligent in-place swapping
K. Mattila, J. Hyväluoma, T. Rossi, M.
Aspnäs, J. Westerholm: An efficient swap
algorithm for the lattice Boltzmann method.
Comp. Phys. Comm 176 (2007) 200–210.

Multi-core aware wave socket
parallelization

G. Wellein, et al.; in preparation, 2009.
cf. my talk on Friday in the HPC session!

All three methods basically eliminate
the toggle index and thus reduce the
memory footprint by approx. 50%.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 43

Summary of basic part on efficient LBM coding

Efficient code implementation requires insight into memory
hierarchy of modern processors.

Data layout analysis and/or spatial blocking is mandatory to
optimize data transfer between main memory and processor.

Optimizing single processor performance and parallelization are
tightly connected to the use of multi-core processors.

Parallel computing does not supersede sequential optimization .

ParallelizationParallelization

OpenMPOpenMP and and ccNUMAccNUMA
MPIMPI
how to decompose the domainhow to decompose the domain
limits of scalability: strong/weak scaling; Amdahl’s/limits of scalability: strong/weak scaling; Amdahl’s/Gustafsson’sGustafsson’s lawlaw

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 45

Two paradigms for parallel programming

Distributed Memory
data exchange between
processes: send/receive
messages via library (MPI =
“Message Passing Interface”)
explicit programming required
up to very large processor
numbers possible

Shared Memory
common address space for a
number of CPUs
access efficiency may vary

SMP, (cc)NUMA
many programming models (e.g.
pthreads, OpenMP)
potentially easier to handle

req. hardware and OS support!

P

M

Message

Communication Network

P

M

P

M

P

M

P P P P

Memory

Pa
rti

al
ly

 b
as

ed
 o

n
LR

Z/
R

R
ZE

 c
ou

rs
e

on
 p

ar
al

le
l p

ro
gr

am
m

in
g.

 B
y

co
ur

te
sy

 o
f R

. B
ad

er
.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 46

Shared memory parallelization with OpenMP

based on compiler directives (extending the C/Fortran standard)
requires shared memory (i.e. all threads can see the same data)
(in principle) allows gradual transformation from serial to parallel
Attention:

memory bandwidth often does not scale with number of processors
watch ccNUMA effects and avoid false sharing!

Pa
rti

al
ly

 b
as

ed
 o

n
LR

Z/
R

R
ZE

 c
ou

rs
e

on
 p

ar
al

le
l p

ro
gr

am
m

in
g.

 B
y

cu
rto

sy
of

 R
. B

ad
er

.

!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP&SHARED(omega,f,obs,Nx,Ny,Nz) &
!$OMP&PRIVATE(x,y,z,ux,uy,uz,dens)
do z=1,Nz ! outer loop parallelized
do y=1,Ny; do x=1,Nx
if(obs(x,y,z)) then
…
relaxation (computations)
…

endif
enddo; enddo;

enddo

http://openmp.org/wp/openmp-specifications/

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 47

Performance issues with OpenMP: ccNUMA and first-touch

First-touch page allocation leads to network contention if
initialization of data is done on a single CPU only.
Only correct parallel initialization and block-static scheduling can
achieve sufficient scalability.

P P

P P

2-way AMD Opteron node
(similar on Intel Nehalem)

2-way Intel Woodcrest node

Uniform memory
access through
chipset.
No placement issues,
but limited bandwidth.

Cache coherent non-
uniform memory
access on-chip
memory controller.
Placement issues,
better scalable
bandwidth in multi-
socket nodes.

Data access on ccNUMA system
without correct data placement:

Data access on ccNUMA system
with correct data placement:

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 48

Scalability examples of OpenMP parallel
LBM

Highly optimized code
version does not see
any performance
increase when using
the second core of a
socket.

Significant
performance increase
only if proper data
placement is ensured
by NUM-aware
initialization.

4-way AMD Opteron node

2-way Intel Core2 node

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 49

Schematic NUMA-aware implementation

! allocate memory
allocate(f(Nx, Ny, Nz, 0:18, 0:1)

! ensure proper location of memory
!$OMP PARALLEL DO
!$OMP&SCHEDULE(STATIC)
do z=1,Nz
do y=1,Ny
do x=1,Nx
f(x,y,z,:,:) = 0.d0

enddo
enddo

enddo
!$OMP END PARALLEL DO
...

...
! Iteration loop
do iterat=1, tEnd

...
! do relaxation and propagation
!$OMP PARALLEL DO
!$OMP&SHARED(Nx,Ny,Nz,omega,f,…)
!$OMP&PRIVATE(x,y,z,ux,uy,uz,…)
!$OMP&SCHEDULE(STATIC)
do z=1,Nz
do y=1,Ny; do x=1,Nx

Some complex calculationsenddo
enddo

enddo
!$OMP END PARALLEL DO
...

enddo
...

What about calloc !?
What about C++ new operator !?
Linux filesystem buffer cache !?
How to ensure that threads do not
migrate between cores !?

!

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 50

Thread assignment: OpenMP vs. CUDA

OpenMP (on CPUs)
divide domain into huge chunks
avoid false sharing
switching between threads rather
expensive

CUDA (on GPUs)
ensure proper alignment
divide domain into small pieces
always many more threads in flight
than GPU cores available to hide
latency

0

3

1

4

2

5

Thread 2

Thread 1

Thread 1
Thread 0

Thread 0

Thread 2

Block 1

Block 2

0

2
3

5
6

8

Thread 0

Thread 1

Thread 2

1

4

7
6
7
8

Thread 1
Thread 0

Thread 2
Block 3

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 51

Parallelization for distributed memory systems

MPI parallelization
domain decomposition
ghost layers / halo cells
explicit data exchange (sending/receiving of messages)
can be used on any parallel computer (i.e. on shared and distributed
memory systems)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 52

Parallelization for distributed memory systems
! initialize your parallel machine
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ierr)
...
call MPI_BCAST(var,cnt,type,root,comm,ierr)
do iterat=1, steps
! do relaxation&propagation
! exchange data between partitions
call MPI_ISEND(buf,cnt,type,to,tag,com,req,ierr)
call MPI_IRECV(buf,cnt,type,from,tag,com,req,ierr)
call MPI_WAITALL(cnt,req,status,ierr)

enddo
call MPI_FINALIZE(ierr)

MPI distinguishes

point-to-point and
collective operations

point-to-point involves
exactly two partners;
can be blocking or
non-blocking
(send & recv)

collective operations
always involve all
partners and are
blocking (e.g. bcast,
reduction, alltoall,
barrier, …)

data types and
operations must
match

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 53

How to decompose a simple domain?

Splitting in

one dimension:
communication
= n2*2*w *1

two dimensions:
communication
= n2*2*w *2 / p1/2

three dimensions:
communication
= n2*2*w *3 / p2/3

w = width of halo
n3 = size of matrix
p = number of processors

cyclic boundary
two neighbors
in each direction

optimal for p>11

Pa
rti

al
ly

 b
as

ed
 o

n
LR

Z/
R

R
ZE

 a
nd

 H
LR

S
co

ur
se

s.
 R

. B
ad

er
 &

 R
ab

en
se

ifn
er

.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 54

How to decompose a complex domain?

Patch approach
Patches are only allocated
for regions which contain
fluid nodes.
Multiple patches can be
assigned to one processor.

Graph-based
distribution
e.g. using METIS on node or
patch level

Cutting of a space
filling curve
e.g. in combination with a
sparse approach using
explicit adjacency
information instead of index
shift operations

Schematic sketches by courtesy of J. Götz, LSS, Uni-Erlangen
References: IWTM/FHG, LSS/Uni-Erlangen, iRMB/TU-Braunschweig …

Schematic sketches by ILBDC and
Aftosmis, et al. AIAA2000-0808

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 55

Performance model for communication

simplest model:

transfer time = latency + message length / bandwidth

latency: startup for message handling
bandwidth: transfer of bytes

n messages:

transfer time = n * latency + total message length / bandwidth

send one big message instead of several small messages!
reduce the total amount of bytes!
bandwidth depends on protocol

Pa
rti

al
ly

 b
as

ed
 o

n
LR

Z/
R

R
ZE

 a
nd

 H
LR

S
co

ur
se

s.
 R

. B
ad

er
 &

 R
ab

en
se

ifn
er

.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 56

Load balance or minimal communication?

Let’s assume
105 cells/processor (40 MB only)

10 MLUPs/processor (reasonably fast)

0.01s per timestep

6 communication partners
per partition each with
2500 cells (6x 200kB)
0.0002s/exchange for Infiniband

Communication makes up only a
tiny fraction of the total time.

optimize for load balance
Characteristics of interconnects

according to Ping-Pong benchmark

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 57

Recomputation versus communication

How to implement, if same data can be computed on several / all
processes

parallel equivalent computation
single computation + broadcast
while other processes can do other work
single computation + broadcast
while other processes idle (worst solution!)

Normally replicate and recompute the values
Consider how many calculations you can execute while only sending
1 Bit from one process to another

(6 µs, 1.0 GFlop/s 6000 operations)
Sending 16 kByte (20x20x5) doubles

(with 300 MB/s bandwidth 53.3 µs 53,300 operations)
very often blocks have to wait for their neighbors
but extra work limits parallel efficiency

communication &
additional

synchronization

additional
computation

Pa
rti

al
ly

 b
as

ed
 o

n
LR

Z/
R

R
ZE

 a
nd

 H
LR

S
co

ur
se

s.
 R

. B
ad

er
 &

 R
ab

en
se

ifn
er

.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 58

Limits of parallel scalability

serial serial

serial serial

seriellseriell serial

Ideal world:
all work is perfectly parallelizable

Reality: purely serial parts limit
maximum speedup

Even worse: Communication
processes hurt scalability even
further

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 59

Calculating speedup in a simple model
T(1) = s+p = serial compute time

purely serial
part s

parallelizable part: p = 1-s

fraction k for communication between
each two workersparallel: T(N) = s+p/N+Nk

General formula for speedup
special case k=0:

Amdahl's Law
"strong scaling"

NksNT
TS

N
s

k
p ++

==
−1

1
)(
)1(

s
NS pN

1)(lim 0 =
∞→

parallel efficiency
N
NS

N
k
p

p

)(
)(=ε

for k=0

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 60

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10
CPUs

S(
N

)

s=0.01
s=0.1
s=0.1, k=0.05

Understanding parallelism: Amdahl´s Law

Amdahl's law poses a serious limit on the use of parallel resources!
in reality the situation gets even worse

load imbalance
communication overhead, task interdependencies
shared resources to be used sequentially (e.g. IO), etc.

0

200

400

600

800

1000

1200

0% 1% 2% 3% 4% 5%
serial fraction s

sp
ee

du
p

strong
scaling
(k=0)

serial fraction = 1 %
max. speedup = 100

Example:
1024 workers

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 61

Shifting the limits of scalability

Communication is not necessarily purely serial
non-blocking networks can transfer many messages concurrently
– factor Nk in denominator becomes k (technical measure)
sometimes, communication can be overlapped with useful work
(depends on implementation, algorithm):

"superlinear speedups“
data size per CPU decreases with increasing CPU count

working set may fit into cache at large CPU counts
communication must be negligible to see this effect

the larger the problem, the larger is often the parallel fraction
i.e. the sequential part s gets smaller and the Amdahl limit is shifted
communication overhead may scale with a smaller power than problem size

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 62

Increasing parallel efficiency (“weak scaling”)
When scaling a problem to more workers, the “amount of work”
(i.e. usually the domain size) will often be scaled as well

perfect situation: runtime stays constant while N increases
often p scales with problem size while s stays constant

“Performance Scale-up” =

linear in N – but closely observe the meaning of the word "work"!

number of timesteps required may increase if domain size is increased!
runtime per iteration is constant but time-to-solution increases

Gustafsson's Law
("weak scaling")

s p

p/Ns

s pN = p * N

s pN / N = p
strong scaling weak scaling

work/time for problem size N with N workers
work/time for problem size 1 with 1 worker

NsssNNpNs
ps
pNsNPs)1()1()(−+=−+=+=
+
+

=

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 63

Some final remarks on parallelization (I)

Domain size 256x129x128 for speed-up; 128^3 per processor for scale up

strong scaling (speed-up)
weak scaling (scale-up)

The benchmarked
systems are outdated,
but the message is
still true:
cheap GBit-ethernet is
enough for weak
scaling;
strong scaling is the
only true challenge.

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 64

Some final remarks on parallelization (II)

pretty linear scaling for all systems !? yes, but with a slope <1 !

Single core
performance
still matters
…

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 65

Some final remarks on parallelization (III)

Fooling the masses by choosing the right metric ☺

Looks like the “red triangles”
performance best !?
At least in terms of speedup …

… but not in terms of time-to-solution.
A slow code scales better – but as an
engineer you are interested in quick
simulation results and not in speedup.
Thus, do not (only) publish speedups.

ToolsTools

makemake
version control systemsversion control systems
MPI tracingMPI tracing

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 67

Automatic recompilation of changed files: make

Rules say when and how to remake targets, which depend on certain
prerequisites, using given shell commands.

explicit and/or implicit rules
Variable definitions and expansions in a makefile work similar to shell
variables.
Directives tell make to do something special while reading a makefile,
like including other makefiles, deciding whether to use or ignore some
part of the makefile, . . .
Comments are started with a # character. The # and the rest of the line
are ignored. If you want a literal #, escape it with a backslash: \#.

Most important automatic variables
$@ name of the target, which caused the rule to be processed.
$< name of the first prerequisite.
$ˆ names of all prerequisites separated by spaces.
$? space-separated names list of all prerequisites newer than the target

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 68

Example of a makefile
CC = icc
FC = ifort
LD = ${FC}
CFLAGS = -O3
FFLAGS = -g
ifeq (${LD}, icc)

LIBS += -L${IFORT_BASE}/lib -lifcore
endif
c_objects =
f_objects = lbmain.f90 geometry.f90 collprop.f90
the rules
.PHONY: clean
lbmSolver: ${c_objects} ${f_objects}
<TAB> ${LD} ${LDFLAGS} -o $@ $ˆ ${LIBS}
${f_objects}: %.o: %.f90
<TAB> ${FC} -c ${FFLAGS} $<
clean:
<TAB> -rm -f lbmSolver *.o *.mod
explicit dependencies
lbmain.o: geometry.mod collprop.mod

define the compilers
and their flags.

conditionally append
additional settings

ignore errors for rm

rule for a class of files

explicit rule

special directive

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 69

Version control systems

RCS – Revision Control System
a simple dinosaurian; suitable for keeping track of OS configuration files but
not for programming projects; history kept in a subdirectory

CVS – Current Version System
extensive free documentation: http://cvsbook.red-bean.com/
MS Windows GUI: http://www.tortoisecvs.org/

SVN – Subversion
extensive free documentation: http://svnbook.red-bean.com/
MS Windows GUI: http://tortoisesvn.tigris.org/

Distributed VCS
git http://git-scm.com/
mercurial/Hg http://www.selenic.com/mercurial/
bazaar http://bazaar-vcs.org/
…

central
repository
basic support
for branching
and merging

each copy is a full
independent repository
full offline operation
advanced features for
merging, branching,
bisection, …

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 70

Intel Trace Collector/Analyzer (I)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 71

Intel Trace Collector/Analyzer (II)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 72

Intel Trace Collector/Analyzer (III)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 73

Intel Trace Collector/Analyzer (IV)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 74

Intel VTune (I)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 75

Intel VTune (II)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 76

Intel VTune (III)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 77

Intel VTune (IV)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 78

Quick analysis of a user code (I)
Compiled using -O3 -fomit-frame-pointer -g -p -xW
Set GMON_OUT_PREFIX and run with the provided input

display gathered timing data with gprof
“stream” requires significant time

look at source code
separate routines for collision, propagation and periodic boundary
conditions; no toggle arrays
“collision optimized” data layout

Let’s flip the array of the distribution function:
f(i,x,y,z) f(x,y,z,i)

used cpp for most of the work; had to do small changes in the MPI
communication manually (i.e. one send/recv pair per direction instead of
just one big pair)

Again a run with the provided input
significant speedup (see next slide); results still identical
invested time for analysis + optimization: <15 min

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 79

Quick analysis of a user code (II)

0,414:12 min10:16 mintotal elapsed time

0,6719272873total
…

1,6221131bcperio
0,9521221674onedimen
1,00146146558analyze
0,981441471lbm
1,241981601117collid
1,004304283001mcollid
0,281344801117stream
0,5984914471d3q19

ratiooptimized [s]original [s]calls

gprof profile for
1 of 8 MPI processes
routine

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 80

The END
These slides (including updates if necessary) are also available online at:

http://www.konwihr.uni-erlangen.de/projekte/workshop-lattice-boltzmann-methods/

