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Outline

Architectural developments
multi-core everywhere

Caches and memory hierarchies
cache and cache thrashing

Performance modeling
expected performance vs. sustained performance

Optimization
common sense optimizations, minimizing data access, effect of data layout

Parallelization
OpenMP, MPI, parallel scalability, domain decomposition

Tools
make, version control systems, MPI tracing
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Preliminaries: what will / wont be covered here

best numerical 
approach and algorithm

suitable
architecture

efficient
implementation

optimization
parallelization
sustainable development

It often pays out to
use a more “expensive”
approach (e.g. MRT vs. 
BGK, better boundary 
conditions, local grid 
refinement, …) even if 
they are computationally 
less efficient and/or more 
expensive!

engineering
problem to 
be solved

There is no free 
lunch.
Implementation of 
efficient codes 
requires under-
standing the 
hardware.

See other lectures for details. 
Here, we usually stick with 
simple LB cases; but of course 
many (but unfortunately not all) 
optimization principles apply in 
a similar way to more complex 
scenarios, too.

1 2

3

Architectural developmentsArchitectural developments

Why we still have to worry about performance.Why we still have to worry about performance.
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Currently available compute platforms
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Vector computers are (unfortu-
nately) a dieing species; but 
other architectures get more 
and more vector-like feature.
GPUs and accelerators are not 
yet mature enough for general 
application (at least in my opinion).

focus on commodity CPUs
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Ever growing processor speed & Moore´s Law

1965 G. Moore (co-founder of Intel) claimed
#transistors on processor chip doubles every 12-24 months 

Intel Corp., 2008

Processor speed grew roughly at the same rate
My computer:  350 MHz (1998) – 3.000 MHz (2004)  
Growth rate:    43% p.y. doubles every 24 months
Why worry about performance?

Attention:
Moore’s law is about 
number of transistors
and not about speed 
or performance, but …
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Why worry about performance: memory gap  

Memory (DRAM) Gap
Memory bandwidth grows 
only at a speed of 7% a year.
Memory latency 
remains constant / increases
in terms of processor speed.
Loading a single data item from 
main memory can cost 100s of 
cycles on a 3 GHz CPU.
On-chip memory controllers recently 
gave boost (especially for multi-
socket nodes); but still, memory 
bandwidth remains an issue.

Optimization of main memory access is mandatory 
for most applications.
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Why worry about performance: multi-core   

Multi-Core Processors – The game is over…
Problem: Moore’s law is still valid but increasing clock speed hits a 
technical wall (power consumption / heat).

Solution: Reduce clock speed of processor but put 2 (or more) 
processors (cores) on a single silicon die.

We will have to use many but less powerful processors in the future.

Parallelization is mandatory for most applications.
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Making use of all the transistors available
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more cores
more/larger caches
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Top500 trends and cores on the desktop
Number of processors is 
rapidly “exploding”
due to more nodes but also 
due to multi-core chips
more and more systems 
become “hybrid”

62 976Sun Ranger (Opteron)TAC8

1 280Earth Simulator 2, 
NEC SX-9/E

JP22

30 720QC AMD Opteron,
Windows HPC

SSC, 
CN

15

51 200SGI Altix ICE
(Intel Harpertown)

NASA4

294 912IBM BlueGene/PFZJ, DE3

150 152Cray XT5Oak 
Ridge

2

129 600IBM Roadrunner
Opteron+Cell

LANL1

CoresSystemSiteRank

And on the desktop?
single/dual/quad/… core CPUs
or 960 cores with 4 GPUs

Caches and memory hierarchies of Caches and memory hierarchies of 
modern processorsmodern processors
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Programming basics

Be aware of different memory mapping for FORTRAN & C:

Different ordering of nested loops required for
“stride 1 access” (i.e. consecutive memory access)!

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3

0,0 1,0 2,0 3,0 0,1 1,1 2,1 3,1 0,2 1,2 2,2 3,2 0,3 1,3 2,3 3,3

real*8 a(0:3,0:3)  ! FORTRAN: column-major

double a(4,4)      // C/C++:  row-major
0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3

do j=0,3
do i=0,3

a(i,j)= …
enddo

enddo

for (i=0; i<4; i++) {
for (j=0; j<4;j++) {

a(i,j)= …;
}

}

0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3

column jrow i

!
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Cache based 
Micro-Processor

Cache based 
Micro-Processor

Memory hierarchies

Vector ProcessorVector Processor

Main
Memory

arithmetic 
units

arithmetic 
units

vector register
L1 cache

L2 cache

L3 cache

ApplicationApplication

Data

manipulation/
computation

arithmetic 
unit

arithmetic 
unit

Main
Memory

floating point 
register

„DRAM Gap“

Processor chip
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Memory hierarchies of recent (dual-core) CPUs

~200 ns
8.5 GB/s

12-13 cycles
51.2 GB/s
6 / 12 MB
5-6 cycles
51.2 GB/s

256 KB 
1 cycle

51.2 GB/s
16 KB 
128

6.4 GFlop/s
1.6 GHz

DC Intel
Itanium2

< 100 ns
6.4 GB/s

---
---
---

~13 cycles
41.6 GB/s

1 MB
3 cycles

41.6 GB/s
64 kB

16 / 32*

5.2 GFlop/s
2.6 GHz

DC AMD
Opteron2362

~200 ns
10.6 GB/s 

---
---
---

7 cycles
96 GB/s

4 MB (for 2 cores)

2 cycles
96 GB/s
32 kB

16 / 32*

12.0 GFlop/s
3.0 GHz

DC Intel
Xeon5160

10.64 GFlop/s
2.66 GHz

Peak Performance
Core frequency

~75 nsLatency
32 GB/sRaw BW

Memory

40-50 cyclesLatency
?Raw BW  

8 MB (for 4 cores)Size 
L3

~10 cyclesLatency
?Raw BW 

256 kBSize
L2

4 cyclesLatency
?Raw BW 

32 kBSize
L1(D)

16 / 32*#Registers

QC Intel 
Nehalem *SSE2

~600
cycles
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Vector TRIAD test: sustained memory bandwidth
double precision :: a(maxLen), b(maxLen), c(maxLen), d(maxLen)
do j=1, repeatCount

!DEC$ VECTOR NONTEMPORAL
do i=1, N

a(i) = b(i) + c(i) * d(i)
end do
! obscure statement to prevent loop optimization

end do
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MI

Memory
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C
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C

P
C
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P
C
C

P
C
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MI

Memory

P
C
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C

Nehalem  
„Core i7“

32 kB 256 kB

8 MB 
for 4 
cores;

2 MB
effective

L1
L2
L3
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Memory hierarchies: cache structure

caches are organized in cache lines that are fetched/stored as a 
whole (e.g. 64 bytes = 8 double words)

if one item is needed, the cache line it belongs to is fetched (miss)
cache line fetch/load has large latency penalty
“neighboring“ items can then be used from cache

Iteration

Cache miss : LatencyLD Use data1
2
3
4

t

5
6
7
8

do i=1,n
s = s + a(i)*a(i)

enddo

hypothetic
cache line size: 
4 words

LD Use data

LD Use data

LD Use …

Cache miss : LatencyLD Use data

LD Use data

LD …

LD Use data
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Memory hierarchies: cache structure (cont.)

Cache line data is always consecutive
cache use is optimal for contiguous access (stride 1)
non-consecutive access reduces performance 
(worst case: ≥ cache line size)
ensure spatial locality by blocking or optimizing data layout

see lattice Boltzmann part later on

Modifying/writing data (usually) requires loading the data first
“read for ownership” (RFO)
unless “non temporal stores” can be used (requires e.g. vectorizable code and proper alignment)

Caches (~MB) must be mapped to memory locations (~GB)

Memory
(109 Byte)

Cache
(106 Byte)

Cache line x

Cache line y

!
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Memory hierarchies: cache mapping

“Cache mapping”: 
pairing of memory locations with cache line
e.g. mapping 1 GB of main memory to 512 KB of cache

Directly mapped cache:
every memory location can be mapped to exactly one cache location
if cache size=n, i-th memory location is mapped to cache location mod(i,n)
memory access with stride=cache size will not allow caching of more than 
one line of data, i.e. effective cache size is one line!
no penalty for stride-one access

Set-associative cache:
m-way associative cache of size m x n: each memory location i can be 
mapped to the m cache locations j*n+mod(i,n), j=0..m-1
if all m locations are taken, one has to be overwritten on next cache load;  
different strategies (least recently used (LRU), random, not recently used (NRU)
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Memory hierarchies: associative caches

...

...

N+1

1

2N-1N+2N

N-120

...

Example: 2-way associative cache. Each memory location can be 
mapped to two cache locations.

e.g. size of main memory= 1 GByte; Cache Size= 256 KB
8192 memory locations are mapped to two cache locations

Memory

Cache
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Memory hierarchies: cache thrashing

If many memory locations are used that are mapped to the same m
cache slots, cache reuse can be very limited even with m-way 
associative caches.

Effective cache size is usually less than m x n for real-world 
applications.

Warning: Using powers of 2 in the leading array dimensions of 
multi-dimensional arrays should be avoided!
“Padding” may help.
See example on the following slides.

!
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N=16
real*8 vel(1:N , 1:N, 4) 
……
s=0.d0
do j=1,N

do i=1,N
s=s+vel(i,j,1)-vel(i,j,2)+vel(i,j,3)-vel(i,j,4)

enddo
enddo

Example: 2D – square lattice 
At each lattice point the 4 velocities for each of 
the 4 directions are stored.

Memory hierarchies: cache thrashing example
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….

….

….

….

1,1,1 2,1,1 3,1,1 4,1,1

memory-to-cache mapping for vel(1:16, 1:16, 4)
Hypothetic cache: 256 byte (=32 doubles) / 2-way associative / Cache line size=32 byte

1,1,1 2,1,1 3,1,1 4,1,1

1,1,2 2,1,2 3,1,2 4,1,2 …. 1,1,3 2,1,3 3,1,3 4,1,3 …. 1,1,4 2,1,4 3,1,4 4,1,4

Hypothetic cache:

2 rows with 16 
double each

Vel(1:16,1:16,1)

1,1,1 2,1,1 3,1,1 4,1,1 ….

1,1,2 2,1,2 3,1,2 4,1,2

1,1,3 2,1,3 3,1,3 4,1,3

1,1,4 2,1,4 3,1,4 4,1,4

Vel(1:16,1:16,2)
Vel(1:16,1:16,3)
Vel(1:16,1:16,4)

i=1, j=1

Each cache line must be loaded 4 times from main memory to cache!

1,1,3 2,1,3 3,1,3 4,1,31,1,1 2,1,1 3,1,1 4,1,1

1,1,2 2,1,2 3,1,2 4,1,21,1,4 2,1,4 3,1,4 4,1,41,1,2 2,1,2 3,1,2 4,1,21,1,4 2,1,4 3,1,4 4,1,4

1,1,3 2,1,3 3,1,3 4,1,3

Memory hierarchies: Cache thrashing example
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….

….

Memory-to-cache mapping for vel(1:18, 1:18, 4)
Hypothetic cache: 256 byte (=32 doubles) / 2-way associative / Cache line size=32 byte

1,1,2 2,1,2 3,1,2 4,1,2 …. 1,1,3 2,1,3 3,1,3 4,1,3 …. 1,1,4 2,1,4 3,1,4 4,1,4

Hypothetic cache:

2 rows with 16 
doubles each

1,1,1 2,1,1 3,1,1 4,1,1 ….

….1,1,4 2,1,4 3,1,4 4,1,4

i=1, j=1

1,1,3 2,1,3 3,1,3 4,1,3

17,1,2 18,1,2 1,1,4 2,1,4

(most) cache lines need only be loaded once from memory to cache!
“padding” of the array solved the cache thrashing issue

17,1,1

…

….

….1,1,1 2,1,1 3,1,1 4,1,1

1,1,2 2,1,2 3,1,2 4,1,2

1,1,3 2,1,3 3,1,3 4,1,3

1,1,1 2,1,1 3,1,1 4,1,1

18,1,1

3,1,4 4,1,4 ….1,1,2 2,1,217,1,1 18,1,1 3,1,2 4,1,2 5,1,2 6,1,2

Memory hierarchies: cache thrashing solved

Performance modelingPerformance modeling

expected performance vs. sustained performanceexpected performance vs. sustained performance

How close to the “optimum” am I ?How close to the “optimum” am I ?
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Lattice Boltzmann method: basic algorithm
The evolution of the particle distribution 
functions fi at each lattice node is 
calculated in discrete time steps.

Calculation of macroscopic flow quantities
and the equilibrium distribution

„Collision“: relaxation (redistribution) of the
particle distributions towards equilibrium

„Propagation“ of  the distribution functions
according to their direction to the next nodes

„Bounce back“ at solid walls
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Computationally: (D3Q19)

explicit Jacobi-like iteration 
scheme
19 double precision floating point 
values stored per node
19-point stencil; data exchange 
with nearest neighbors
~ 200 Flops per node update
(for BGK or TRT collision model)

algorithmic balance:
456 bytes / 200 flops = 2.3 B/flop

system balance of a 2-socket 
Nehalem node (2.66 GHz, no SMT):
32 GB/s sustained stream bandwidth / 
85.12 GFlop/s = 0.37 B/flop 

we will usually be memory bound
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Estimation of performance: in-cache case

our performance metric for lattice Boltzmann codes:
million (fluid) lattice node updates per second – MLUP/s

performance estimation
general assumptions

D3Q19 lattice
200 floating point operations per fluid node update (reasonable for BGK/TRT)

Case 1: data transfer is infinite fast (all data fits into cache):
max. MLUP/s = PeakPerformance / (200 Flop/node update)
single 2.66 GHz Intel Core i7 core = 10,640 MFLOP/s max. 53 MLUP/s
in reality even simple kernels do not achieve peak performance
and transfer speed is finite even for caches
thus, this upper limit is more hypothetical than real
in-cache performance depends on many small details and can vary e.g. 
significantly from compiler release to compiler release

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 27

Estimation of performance: memory-bound case
Crossover between cache and memory bound computations

Complete domain no longer fits into outermost cache (N=Nx=Ny=Nz)
2 *19 * N^3 * 8 Byte ~ L2/L3 cache size

1 MB cache: N ~ 14-15;    4 MB cache: N ~ 23-24

Cache 2: data must always be transferred from/to main memory
assumption: full use of each cache line loaded
data to be transferred for a single fluid node update: (including RFA)
(2+1) * 19 * 8 Byte 456 Bytes/(node update)
max. number of lattice site updates per second MLUPs:
MaxMLUPs = MemoryBandwidth / (456 Bytes/node update)
(effective) MemoryBandwidth = 3-12 GByte/s MaxMLUPs ~ 6-26 MLUPs

Verification of efficiency of data access using hardware perf counter
number of cache misses is a bad performance metric (at least on Intel Xeon 
systems due to hardware prefetcher, etc.)
more reliable: memory bus (FSB) utilization and number of buss accesses
minimum number of bus accesses: N^3 * timesteps * 456 / 64 size of a

cache line

Implementation and optimizationImplementation and optimization
of a 3of a 3--D lattice Boltzmann kernelD lattice Boltzmann kernel

common sense optimizationscommon sense optimizations
minimizing data accessminimizing data access
effect of data layouteffect of data layout
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Basic optimizations: preliminaries (general)

General guidelines – some common sense optimizations

1. do less work
eliminate common sub-expressions
avoid branches; move if tests outside of inner loops

2. avoid expensive operations
a division is much more expensive than a multiplication
does the compiler realize that x**2.0 is just x*x
trigonometric expressions, etc.
“strength reduction”; tabulating values; …

3. shrink working set
use appropriate data types (e.g. float vs. double)
only calculate / store what is really required

4. use appropriate compilers and compiler flags
optimization; inlining; …
tell the compiler if data references disjoint locations (i.e. no aliasing)

G. Hager and G. Wellein:
Part 1: Architectures and 
Performance Characteristics 
of Modern High Performance 
Computers.
Part 2: Optimization 
Techniques for Modern High 
Performance Computers.
In Fehske et al., Lecture Notes 
Phys. 739, pp 681-730 and pp. 
731-767 (2008), ISBN: 978-3-
540-74685-0. (Springer, Berlin)
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Basic optimizations: preliminaries (LBM specific)
1. analyze relaxation step (I)

many operations can be eliminated (common sub-expressions, zero-
velocity components, etc.) — do not rely on compiler!
# of floating point operations depends on compiler & optimization level 

even worse: (C++) function calls which are not inlined; e.g. getF(…)
2. analyze relaxation step (II)

compare usq=ux**2.0+uy**2.0+uz**2.0 usq=ux*ux+uy*uy+uz*uz
3. combine collide & stream step in a single loop to minimize data

transfer! Otherwise data may have to be transferred twice.

4. e.g. for Intel compiler: -O3 –xSSE4.2 –fno-alias
(–fno-alias of course only if no pointer aliasing is used)

! Calculate ux velocity component
ux=0.d0
do i=0,18

ux=ux+ex(i)*f(i,x,y,z,t)
enddo
! worst case: loop, 38 LD; 19 MultAdd

ux=f(E ,x,y,z,t)+f(NE,x,y,z,t)+
f(SE,x,y,z,t)+f(TE,x,y,z,t)+
f(BE,x,y,z,t)-f(W ,x,y,z,t)-
f(NW,x,y,z,t)-f(SW,x,y,z,t)-
f(TW,x,y,z,t)-f(BW,x,y,z,t)

! 10 LD; 9 Add
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Basic optimizations: initial implementation

Starting point: straight forward 
“full matrix” approach with
toggle index and 
marker-and-cell flag field

separate storage for even/odd 
time steps (“source/destination”)
to avoid data dependencies
discrete velocity as additional 
array index
ghost layer (to avoid special 
algorithm at domain boundaries)

5-D array   f(Q, x,y,z, t)
In the following, it is assumed 
that by increasing the first 
index by one, you go to the 
physically next location in 
memory (FORTRAN, column-major).

real*8 f(0:18,0:Nx+1,0:Ny+1,0:Nz+1,0:1)
do z=1,Nz; do y=1,Ny; do x=1,Nx
if( fluidcell(x,y,z) ) then
LOAD f( 0,x,y,z,t) 
LOAD f( 1,x,y,z,t) 
… 
LOAD f(18,x,y,z,t)
Relaxation (complex computations)
SAVE f( 0,x ,y  ,z  ,t+1) 
SAVE f( 1,x+1,y  ,z  ,t+1) 
SAVE f( 2,x ,y+1,z  ,t+1) 
SAVE f( 3,x-1,y+1,z  ,t+1) 
…
SAVE f(18,x ,y-1,z-1,t+1)

endif
enddo; enddo; enddo

#load operations: 19*Nx*Ny*Nz + 19*Nx*Ny*Nz
#store operations:    19*Nx*Ny*Nz

If cache line of store operation is not 
in cache it must be loaded first (RFO) !
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Performance characteristics of initial code

Intel Xeon 3.4 GHz (1 MB L2; 5.3 GByte/s) max. 5-6 MLUP/s

data set fits into cache

performance breakdowns?

f(Q, x,y,z, t)
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Explanation of the performance breakdowns
A single node is updated by 
18 write accesses from
3 successive z-planes.

total amount of data for
3 successive z-planes:
Memz ~ 3 * 2 * 19 *8 * 
(Nx+2)*(Ny+2) Bytes

cache lines must be 
reloaded if
Memz ~ L2/L3 cache

1 MB cache Nx=Ny ~ 33 

next breakdown if only
3 y-lines fit into cache
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all data fits to cache

always from
main memory

3 z-planes
fit to cache 3 y-lanes

fit to cache

Intel Xeon 3.4 GHz (1 MB L2)
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Optimization of data access: spatial blocking 

Increase spatial locality by spatial blocking

real(8) f(0:18,0:Nx+1,…,0:1)
do zz=1,Nz,blcksize
do yy=1,Ny,blcksize
do xx=1,Nx,blcksize
do z=zz,min(Nz,zz+blcksize-1)
do y=yy,min(Ny,yy+blcksize-1)
do x=xx,min(Nx,xx+blcksize-1)

if( fluidcell(x,y,z) ) then
…………
endif

enddo
enddo
enddo
enddo

enddo
enddo

Correct choice of blcksize?

• 2*19*blcksize3 Byte < L2/L3
→ blcksize ~8-10

• 2*19*3*bcksize2 Byte < L2/L3
→ blcksize ~25-30
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Performance characteristics with 3-D blocking

Unblocked:
first performance drop at Nx=xMax~35

Intel Xeon 3.4 GHz (1 MB L2; 5.3 GByte/s) max. 5-6 MLUP/s

With spatial blocking: 
performance remains 
almost constant
blcksize=8

f(Q, x,y,z, t)
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Optimization of data access: data layout

Starting point: straight forward “full matrix” approach
with toggle index and marker-and-cell flag field

separate storage for even/odd time steps (“source/destination”)
to avoid data dependencies
discrete velocity as additional array index
ghost layer (to avoid special algorithm at domain boundaries)

5-D array:     F( 0:18, 0:xMax+1, 0:yMax+1, 0:zMax+1, 0:1)

By increasing the first index by one, you go to the physically next 
location in memory (FORTRAN, column-major).

In principle, any permutation of these indices can be used…
…but which is the most efficient?

F(Q, x,y,z, t) „collision optimized“  („array of structures”)

F(x,y,z, Q, t) „propagation optimized“ („structure of arrays”)



July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 37

real*8 f(0:18,0:Nx+1,0:Ny+1,0:Nz+1,0:1) f(0:Nx+1,0:Ny+1,0:Nz+1,0:18,0:1)
do z=1,Nz; do y=1,Ny; do x=1,Nx do z=1,Nz; do y=1,Ny; do x=1,Nx
if( fluidcell(x,y,z) ) then if( fluidcell(x,y,z) ) then
LOAD f( 0,x,y,z,t) LOAD f(x,y,z, 0,t)
LOAD f( 1,x,y,z,t) LOAD f(x,y,z, 1,t)
… … 
LOAD f(18,x,y,z,t) LOAD f(x,y,z,18,t)
Relaxation (complex computations) Relaxation (computations)
SAVE f( 0,x ,y  ,z  ,t+1) SAVE f(x ,y  ,z  , 0,t+1)
SAVE f( 1,x+1,y  ,z  ,t+1) SAVE f(x+1,y+1,z  , 1,t+1)
SAVE f( 2,x ,y+1,z  ,t+1) SAVE f(x ,y+1,z  , 2,t+1)
SAVE f( 3,x-1,y+1,z  ,t+1) SAVE f(x-1,y+1,z  , 3,t+1)
… …
SAVE f(18,x ,y-1,z-1,t+1) SAVE f(x ,y-1,z-1,18,t+1)

endif endif
enddo; enddo; enddo enddo; enddo; enddo

Effect of different data layouts

„collision“

„propa-
gation“

Data layout has a significant effect on cache based systems:
structure-of-arrays layout has high spatial data locality built-in
if 38 cache lines stay in the cache! (38 * 128 Byte ~ 5 kByte << L2/L3 caches)
but watch possibility of cache thrashing for structure-of-arrays layout

structure-of-arraysarray-of-structures

loop blocking
mandatory !?

stride-1
memory
access

19 different 
cache lines; 
but re-usable

large
distances

in memory;
cache lines

rarely
reusable

19
cache
lines;
but 

all are
reusable
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Performance characteristics of 2nd data layout

f(Q,x,y,z,t)
array-of-structures
with/without
spatial blocking

f(x,y,z,Q,t)
structure-of-arrays;
without any blocking

all data in
L2 cache

MaxMLUPs

3 lines in
L2 cache

3 plans in
L2 cache

correct choice of data layout 
improves performance by 2x-3x
without the need for blocking

Intel Xeon 3.4 GHz (1 MB L2; 5.3 GByte/s) max. 5-6 MLUP/s

f(Q, x,y,z, t)
f(x,y,z, Q, t)
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Optimization of data access: cache thrashing 

Generally avoid powers of 2 in the leading dimension
of (multidimensional) arrays.

use “array padding” if necessary

In case of the 
structure-of-arrays
data layout:

Use
F(0:128,0:128,…)

instead of
F(0:127,0:127,…)

The array-of-structures 
data layout generally 
does not suffer from 
cache thrashing as the 
leading dimension is 19.

f(Q, x,y,z, t)
f(x,y,z, Q, t)

!
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Optimized data movement: splitting innermost loop
! temporary arrays to hold pre-calculated values
real(8) :: ux(Nx), uy(Nx), uz(Nx), dens(Nx)
do z=1,Nz; do y=1,Ny

do x=1,N
dens(x) = sum( f(x,y,z,:,t) )
ux(x) = f(x,y,z,NE,t) + f(x,y,z,SE,t) + …
uy(x) = … ; uz(x) = …

end do
! update (relax and advect) first fraction of directions
do x=1,Nx

feq_com=…; t2x2=…; fac2=…; ! calc common coefficients
ui= ux(x)+uy(x); …sym = omega_h(f(x,y,z,NE,t)+f(x,y,z,SW,t)- fac2*ui*ui-t2x2*feq_com)asy = asyo_h*(f(x,y,z,NE,t)-f(x,y,z,SW,t)-3.d0*t2x2*ui)
f(x+1,y+1,z,NE,t1) = f(x,y,z,NE,t) - sym – asyf(x-1,y-1,z,SW,t1) = f(x,y,z,SW,t) - sym + asy…

end do
! update (relax and advect) 2nd/3rd fraction of directions
do x=1,Nx; similar calculations; end do

end do; end do
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Performance characteristics with loop splitting

Woodcrest:
Intel Xeon 5150
2.67 GHz 
4 MB L2 (2 cores)

FSB1333 
(10.6 GB/s)

Opteron:
AMD Opteron 270
2.0 GHz 
1 MB L2 (per core)

6.4 GB/s

Itanium2:
Intel Itanium2/Madison9M
1.6 GHz / 6 MB L3 / 8.5 GB/s

f(x,y,z,Q,t)
f(x,y,z,Q,t)

f(x,y,z,Q,t)
f(x,y,z,Q,t)
f(x,y,z,Q,t)
f(x,y,z,Q,t)

most significant performance gain
on Intel Xeon (Woodcrest) system

2x !
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Reducing the memory footprint
Compressed grids

T. Pohl, M. Kowarschik, J. Wilke, K. 
Igelberger, U. Rüde: Optimization and 
profiling of the cache performance of 
parallel lattice Boltzmann codes.
Par. Proc. Lett., 13:4 (2003) 549-560.

Intelligent in-place swapping
K. Mattila, J. Hyväluoma, T. Rossi, M. 
Aspnäs, J. Westerholm: An efficient swap 
algorithm for the lattice Boltzmann method.
Comp. Phys. Comm 176 (2007) 200–210.

Multi-core aware wave socket 
parallelization

G. Wellein, et al.; in preparation, 2009.
cf. my talk on Friday in the HPC session!

All three methods basically eliminate 
the toggle index and thus reduce the 
memory footprint by approx. 50%.
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Summary of basic part on efficient LBM coding

Efficient code implementation requires insight into memory 
hierarchy of modern processors.

Data layout analysis and/or spatial blocking is mandatory to 
optimize data transfer between main memory and processor.

Optimizing single processor performance and parallelization are 
tightly connected to the use of multi-core processors.

Parallel computing does not supersede sequential optimization .

ParallelizationParallelization

OpenMPOpenMP and and ccNUMAccNUMA
MPIMPI
how to decompose the domainhow to decompose the domain
limits of scalability: strong/weak scaling; Amdahl’s/limits of scalability: strong/weak scaling; Amdahl’s/Gustafsson’sGustafsson’s lawlaw
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Two paradigms for parallel programming

Distributed Memory
data exchange between 
processes: send/receive 
messages via library (MPI =
“Message Passing Interface”)
explicit programming required
up to very large processor 
numbers possible

Shared Memory
common address space for a 
number of CPUs
access efficiency may vary

SMP, (cc)NUMA
many programming models (e.g. 
pthreads, OpenMP)
potentially easier to handle

req. hardware and OS support!

P
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Communication Network
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Shared memory parallelization with OpenMP

based on compiler directives (extending the C/Fortran standard)
requires shared memory (i.e. all threads can see the same data)
(in principle) allows gradual transformation from serial to parallel
Attention:

memory bandwidth often does not scale with number of processors
watch ccNUMA effects and avoid false sharing!
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!$OMP PARALLEL DO DEFAULT(NONE)    &
!$OMP&SHARED(omega,f,obs,Nx,Ny,Nz) &
!$OMP&PRIVATE(x,y,z,ux,uy,uz,dens)
do z=1,Nz ! outer loop parallelized
do y=1,Ny; do x=1,Nx
if( obs(x,y,z) ) then
…
relaxation (computations)
…

endif
enddo; enddo;

enddo

http://openmp.org/wp/openmp-specifications/
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Performance issues with OpenMP: ccNUMA and first-touch

First-touch page allocation leads to network contention if 
initialization of data is done on a single CPU only.
Only correct parallel initialization and block-static scheduling can 
achieve sufficient scalability.

P P

P P

2-way AMD Opteron node
(similar on Intel Nehalem)

2-way Intel Woodcrest node

Uniform memory 
access through 
chipset.
No placement issues,
but limited bandwidth.

Cache coherent non-
uniform memory 
access on-chip 
memory controller.
Placement issues,
better scalable 
bandwidth in multi-
socket nodes.

Data access on ccNUMA system 
without correct data placement:

Data access on ccNUMA system 
with correct data placement:
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Scalability examples of OpenMP parallel 
LBM

Highly optimized code 
version does not see 
any performance 
increase when using 
the second core of a 
socket.

Significant 
performance increase 
only if proper data 
placement is ensured 
by NUM-aware 
initialization.

4-way AMD Opteron node

2-way Intel Core2  node
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Schematic NUMA-aware implementation

! allocate memory
allocate( f(Nx, Ny, Nz, 0:18, 0:1)

! ensure proper location of memory
!$OMP PARALLEL DO
!$OMP&SCHEDULE(STATIC)
do z=1,Nz
do y=1,Ny
do x=1,Nx
f(x,y,z,:,:) = 0.d0

enddo
enddo

enddo
!$OMP END PARALLEL DO
...

...
! Iteration loop
do iterat=1, tEnd

...
! do relaxation and propagation
!$OMP PARALLEL DO
!$OMP&SHARED(Nx,Ny,Nz,omega,f,…)
!$OMP&PRIVATE(x,y,z,ux,uy,uz,…)
!$OMP&SCHEDULE(STATIC)
do z=1,Nz
do y=1,Ny; do x=1,Nx

Some complex calculationsenddo
enddo

enddo
!$OMP END PARALLEL DO
...

enddo
...

What about calloc !?
What about C++ new operator !?
Linux filesystem buffer cache !?
How to ensure that threads do not 
migrate between cores !?

!
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Thread assignment: OpenMP vs. CUDA

OpenMP (on CPUs)
divide domain into huge chunks
avoid false sharing
switching between threads rather 
expensive

CUDA (on GPUs)
ensure proper alignment
divide domain into small pieces
always many more threads in flight 
than GPU cores available to hide 
latency
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Thread 2

Thread 1

Thread 1
Thread 0

Thread 0

Thread 2

Block 1
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Thread 1
Thread 0

Thread 2
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Parallelization for distributed memory systems

MPI parallelization
domain decomposition
ghost layers / halo cells
explicit data exchange (sending/receiving of messages)
can be used on any parallel computer (i.e. on shared and distributed 
memory systems)
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Parallelization for distributed memory systems
! initialize your parallel machine
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ierr)
...
call MPI_BCAST(var,cnt,type,root,comm,ierr)
do iterat=1, steps
! do relaxation&propagation
! exchange data between partitions
call MPI_ISEND(buf,cnt,type,to,tag,com,req,ierr)
call MPI_IRECV(buf,cnt,type,from,tag,com,req,ierr)
call MPI_WAITALL(cnt,req,status,ierr)

enddo
call MPI_FINALIZE(ierr)

MPI distinguishes

point-to-point and 
collective operations

point-to-point involves 
exactly two partners; 
can be blocking or 
non-blocking
(send & recv)

collective operations 
always involve all 
partners and are 
blocking (e.g. bcast, 
reduction, alltoall, 
barrier, …)

data types and 
operations must 
match
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How to decompose a simple domain?

Splitting in

one dimension:
communication
= n2*2*w *1

two dimensions:
communication
= n2*2*w *2 / p1/2

three dimensions:
communication
= n2*2*w *3 / p2/3

w = width of halo
n3 = size of matrix
p = number of processors

cyclic boundary
two neighbors 
in each direction

optimal for p>11
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How to decompose a complex domain?

Patch approach
Patches are only allocated 
for regions which contain 
fluid nodes.
Multiple patches can be 
assigned to one processor.

Graph-based 
distribution
e.g. using METIS on node or 
patch level

Cutting of a space 
filling curve
e.g. in combination with a 
sparse approach using 
explicit adjacency 
information instead of index 
shift operations

Schematic sketches by courtesy of J. Götz, LSS, Uni-Erlangen
References: IWTM/FHG, LSS/Uni-Erlangen, iRMB/TU-Braunschweig …

Schematic sketches by ILBDC and
Aftosmis, et al. AIAA2000-0808
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Performance model for communication

simplest model:

transfer time  =  latency +  message length / bandwidth

latency: startup for message handling
bandwidth: transfer of bytes

n  messages:

transfer time  =  n * latency +  total message length / bandwidth

send one big message instead of several small messages!
reduce the total amount of bytes!
bandwidth depends on protocol
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Load balance or minimal communication?

Let’s assume 
105 cells/processor (40 MB only)

10 MLUPs/processor (reasonably fast)

0.01s per timestep

6 communication partners 
per partition each with 
2500 cells (6x 200kB)
0.0002s/exchange for Infiniband

Communication makes up only a 
tiny fraction of the total time.

optimize for load balance
Characteristics of interconnects 

according to Ping-Pong benchmark
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Recomputation versus communication

How to implement, if same data can be computed on several / all 
processes

parallel equivalent computation
single computation + broadcast
while other processes can do other work
single computation + broadcast
while other processes idle (worst solution!)

Normally replicate and recompute the values
Consider how many calculations you can execute while only sending 
1 Bit from one process to another

(6 µs, 1.0 GFlop/s 6000 operations)
Sending 16 kByte (20x20x5) doubles

(with 300 MB/s bandwidth 53.3 µs 53,300 operations)
very often blocks have to wait for their neighbors
but extra work limits parallel efficiency

communication &
additional 

synchronization

additional 
computation
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Limits of parallel scalability

serial serial

serial serial

seriellseriell serial

Ideal world:
all work is perfectly parallelizable

Reality: purely serial parts limit
maximum speedup

Even worse: Communication 
processes hurt scalability even 
further
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Calculating speedup in a simple model
T(1) = s+p = serial compute time

purely serial 
part s

parallelizable part: p = 1-s

fraction k for communication between 
each two workersparallel: T(N) = s+p/N+Nk

General formula for speedup
special case k=0:

Amdahl's Law
"strong scaling"
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Understanding parallelism: Amdahl´s Law

Amdahl's law poses a serious limit on the use of parallel resources!
in reality the situation gets even worse

load imbalance
communication overhead, task interdependencies
shared resources to be used sequentially (e.g. IO), etc.

0
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0% 1% 2% 3% 4% 5%
serial fraction s
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ee
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p

strong
scaling
(k=0)

serial fraction = 1 %
max. speedup = 100

Example: 
1024 workers
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Shifting the limits of scalability

Communication is not necessarily purely serial
non-blocking networks can transfer many messages concurrently 
– factor Nk in denominator becomes k (technical measure)
sometimes, communication can be overlapped with useful work
(depends on implementation, algorithm):

"superlinear speedups“
data size per CPU decreases with increasing CPU count

working set may fit into cache at large CPU counts
communication must be negligible to see this effect

the larger the problem, the larger is often the parallel fraction
i.e. the sequential part s gets smaller and the Amdahl limit is shifted
communication overhead may scale with a smaller power than problem size

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 62

Increasing parallel efficiency (“weak scaling”)
When scaling a problem to more workers, the “amount of work” 
(i.e. usually the domain size) will often be scaled as well

perfect situation: runtime stays constant while N increases
often p scales with problem size while s stays constant

“Performance Scale-up” = 

linear in N – but closely observe the meaning of the word "work"!

number of timesteps required may increase if domain size is increased!
runtime per iteration is constant but time-to-solution increases 

Gustafsson's Law
("weak scaling")

s p

p/Ns

s pN = p * N

s pN / N = p
strong scaling weak scaling

work/time for problem size N with N workers
work/time for problem size 1 with 1 worker

NsssNNpNs
ps
pNsNPs )1()1()( −+=−+=+=
+
+

=
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Some final remarks on parallelization (I)

Domain size 256x129x128 for speed-up; 128^3 per processor for scale up

strong scaling (speed-up)
weak scaling (scale-up)

The benchmarked 
systems are outdated, 
but the message is 
still true:
cheap GBit-ethernet is 
enough for weak 
scaling; 
strong scaling is the 
only true challenge.
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Some final remarks on parallelization (II)

pretty linear scaling for all systems !? yes, but with a slope <1 !

Single core 
performance 
still matters 
…
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Some final remarks on parallelization (III)

Fooling the masses by choosing the right metric ☺

Looks like the “red triangles”
performance best !?
At least in terms of speedup …

… but not in terms of time-to-solution.
A slow code scales better – but as an 
engineer you are interested in quick 
simulation results and not in speedup.
Thus, do not (only) publish speedups.

ToolsTools

makemake
version control systemsversion control systems
MPI tracingMPI tracing
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Automatic recompilation of changed files: make

Rules say when and how to remake targets, which depend on certain 
prerequisites, using given shell commands.

explicit and/or implicit rules
Variable definitions and expansions in a makefile work similar to shell 
variables.
Directives tell make to do something special while reading a makefile, 
like including other makefiles, deciding whether to use or ignore some 
part of the makefile, . . .
Comments are started with a # character. The # and the rest of the line 
are ignored. If you want a literal #, escape it with a backslash: \#.

Most important automatic variables
$@ name of the target, which caused the rule to be processed.
$< name of the first prerequisite.
$ˆ names of all prerequisites separated by spaces.
$? space-separated names list of all prerequisites newer than the target

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 68

Example of a makefile
CC = icc
FC = ifort
LD = ${FC}
CFLAGS = -O3
FFLAGS = -g
ifeq (${LD}, icc)

LIBS += -L${IFORT_BASE}/lib -lifcore
endif
c_objects =
f_objects = lbmain.f90 geometry.f90 collprop.f90
# the rules
.PHONY: clean
lbmSolver: ${c_objects} ${f_objects}
<TAB> ${LD} ${LDFLAGS} -o $@ $ˆ ${LIBS}
${f_objects}: %.o: %.f90
<TAB> ${FC} -c ${FFLAGS} $<
clean:
<TAB> -rm -f lbmSolver *.o *.mod
# explicit dependencies
lbmain.o: geometry.mod collprop.mod

define the compilers 
and their flags.

conditionally append 
additional settings

ignore errors for rm

rule for a class of files

explicit rule

special directive
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Version control systems

RCS – Revision Control System
a simple dinosaurian; suitable for keeping track of OS configuration files but 
not for programming projects; history kept in a subdirectory

CVS – Current Version System
extensive free documentation: http://cvsbook.red-bean.com/
MS Windows GUI: http://www.tortoisecvs.org/

SVN – Subversion
extensive free documentation: http://svnbook.red-bean.com/
MS Windows GUI: http://tortoisesvn.tigris.org/

Distributed VCS
git http://git-scm.com/
mercurial/Hg http://www.selenic.com/mercurial/
bazaar http://bazaar-vcs.org/
…

central 
repository
basic support 
for branching 
and merging

each copy is a full 
independent repository
full offline operation
advanced features for 
merging, branching, 
bisection, …
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Intel Trace Collector/Analyzer (I)
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Intel Trace Collector/Analyzer (II)
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Intel Trace Collector/Analyzer (III)
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Intel Trace Collector/Analyzer (IV)
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Intel VTune (I)

July 2009
ICMMES-09 Tutorial

thomas.zeiser@rrze.uni-erlangen.de 75

Intel VTune (II)
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Intel VTune (III)
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Intel VTune (IV)
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Quick analysis of a user code (I)
Compiled using -O3 -fomit-frame-pointer -g -p -xW
Set GMON_OUT_PREFIX and run with the provided input

display gathered timing data with gprof
“stream” requires significant time

look at source code
separate routines for collision, propagation and periodic boundary 
conditions; no toggle arrays
“collision optimized” data layout

Let’s flip the array of the distribution function:
f(i,x,y,z) f(x,y,z,i)

used cpp for most of the work; had to do small changes in the MPI 
communication manually (i.e. one send/recv pair per direction instead of 
just one big pair)

Again a run with the provided input
significant speedup (see next slide); results still identical
invested time for analysis + optimization: <15 min
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Quick analysis of a user code (II)

0,414:12 min10:16 mintotal elapsed time

0,6719272873total
…

1,6221131bcperio
0,9521221674onedimen
1,00146146558analyze
0,981441471lbm
1,241981601117collid
1,004304283001mcollid
0,281344801117stream
0,5984914471d3q19

ratiooptimized [s]original [s]calls

gprof profile for
1 of 8 MPI processes
routine
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The END
These slides (including updates if necessary) are also available online at:

http://www.konwihr.uni-erlangen.de/projekte/workshop-lattice-boltzmann-methods/


